UW Prosocial Computing Lab
Designing a conversational system for data-driven reflection
Overview
As a member of the research team, I translated participatory user research data into conversational scripts, designed surveys, and analyzed user engagement and interview data to inform the design of a mobile conversational system. Our research findings will be published and presented at UbiComp 2018.
Problem & Opportunity
Fitness trackers (e.g., Fitbit) collect large amounts of user data. However, learning from and acting upon that data remains a challenge for many people.
Design Challenge
How might we help people ultimately act upon the data collected from their fitness trackers?
Solution
We designed a mobile conversational system that helps users reflect upon their physical activity, with the hypothesis that reflection leads to learning and action. We designed 25 conversational scripts that Fitbit users can interact with using SMS/MMS. At the end of a 2-week field study with 33 participants, we found that engagement with the system increased motivation and the adoption of new health behaviors.
My Role
Research assistant to Professor Gary Hsieh and PhD student Rafal Kocielnik
Methods: Survey design, qualitative coding & data analysis
Timeline: March 2017 - September 2017
Impact
I'm excited to announce that I'll be second author in a peer-reviewed paper at UbiComp 2018.
Sample Dialogues

Design by Rafal Kocielnik; I provided research support during the design process